

JDL-BAB-50-23-1020-TE-120-2.0

High-power diode laser bars: 1020 nm, 120 W cw

Features

- High laser power
- High efficiency
- Long lifetime, high reliability
- Excellent beam characteristics

Applications

- Pumping of solid-state lasers and fiber lasers
- Industrial, scientific and medical systems
- Printing industry
- Defense and security

High-power diode laser bars | 1020 nm, 120 W cw JDL-BAB-50-23-1020-TE-120-20

Preliminary specifications JDL-BAB-50-23-1020-TE-120-2.0

Operation*	Symbol	Min	Nom	Max	Unit
Wavelength (cw)	λ	1017	1020	1023	nm
Optical Output Power	P _{opt}		120		W
Operation Mode			cw, switched		
Power Modulation			100		 %
Geometrical					
Number of Emitters			23		
Emitter Width	W	195	200	205	μm
Emitter Pitch	P		400		μm
Filling Factor	F		50		%
Bar Width	В	9600	9800	10000	μm
Cavity Length	L	980	1000	1020	μm
Thickness	D	115	120	125	μm
Electro Optical Data*					
Fast Axis Divergence (FWHM)	θ_{\perp}		25	27	•
Fast Axis Divergence**	θ_{\perp}		55	57	0
Slow Axis Divergence at 120 W (FWHM)	θ		5	7	0
Slow Axis Divergence at 120 W**	θ		7	9	•
Pulse Wavelength	λ	1003	1006	1009	nm
Spectral Bandwidth (FWHM)	Δλ		4	5	nm
Slope Efficiency***	η	0.98	1.0		W/A
Threshold Current	I _{th}		13	15	A
Operating Current	l _{op}		132	137	A
Operating Voltage	V _{op}		1.48	1.49	V
Series Resistance	R _s		1.7	1.8	mΩ
Degree of TE Polarization	α	95			%
EO Conversion Efficiency***	η_{tot}	59	61		%

 $^{^*}$ Mounted on a heat sink with Rth = 0.5 K/W, coolant temperature 25 °C, operating at nominal power

Note: Nominal data represents typical values.

Safety Advice: Laser bars are the active components in high-power diode lasers in accordance to IEC standard class 4 laser products.

As delivered, laser bars cannot emit any laser beam. The laser beam can only be released if the bars are connected to a source of

electrical energy. In this case, IEC-Standard 60825-1 describes the safety regulations to be taken to avoid personal injury.

^{**} Full width at 95 % power content

 $^{^{\}star\star\star} \text{ Item may change upon notice and acceptance by Jenoptik, due to future improvements of technology or processing}$