

Just the right PIC – How advanced test concepts enable fast PIC waferlevel tests

Tobias Gnausch | Sylwester Latkowski

Electronic-Photonic Test Roadmap for Integrated Photonics

Jenoptik Webinar 2024

Sylwester Latkowski

Outline

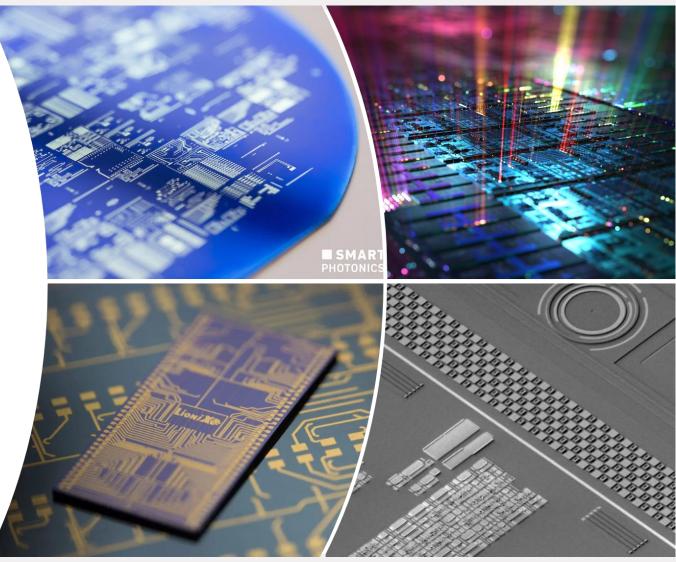
• Integrated Photonics

- Wind of the future and some challenges
- Electronic-Photonic test for Integrated Photonic Systems
 - Needs, challenges, and a crystal ball
- Photonic Integration Technology Center
 - Metrology Program at a glance

Photonics is all around round

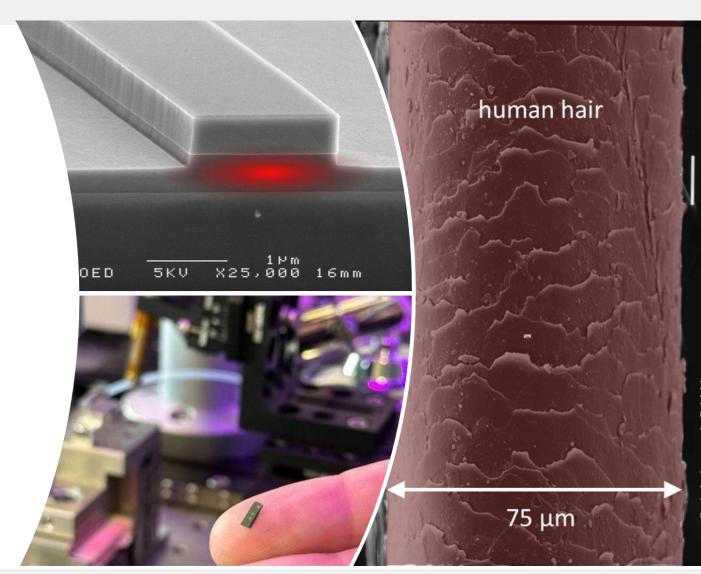
- Tele-communications
- Data-communications
- Access to information
- Streaming
- Gaming
- Socializing
- Banking
- Trading
- Security

Even more photonics in the future

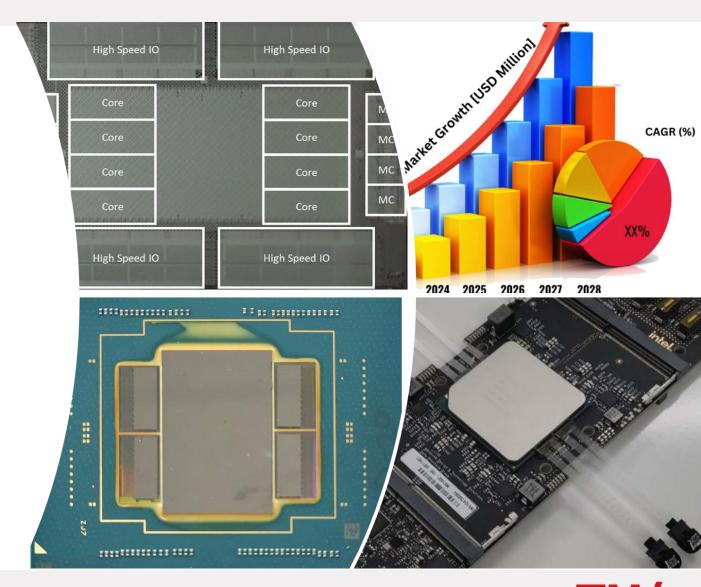

- Artificial Intelligence
- Quantum applications
- Autonomous transportation
- Sensors everywhere

Integrated Photonics System on a Chip

- Complex functionalities integrated
- Monolithic technologies
- Heterogeneous technologies
- No single one that suites all
- No real standards



Integrated Photonics can be tiny


- Optical waveguides are in the micron
- Multi-IO systems are essential
- Several today -> Hundreds soon
- High-density optical IOs
- Optical alignment challenging
- Probing is challenging
- No standard IOs on the PIC side

Photonics meets microelectronics

- Electronic-Photonic SoC
- Economy of scales
- Production at volumes
- High throughput test solutions
- Automated Test Equipment
- Highly parallel testing
- Electronic-Photonic Probing
- Standardization

Electronic-Photonic Test

Driving Photonics Manufacturing

Role and importance of PIC testing

- Identify known-good-die (KDG)
- Push the performance-yield envelope
- Create improved accuracy models for the designers to make next generation product
- Testing is often a short-hand for
 - Validation
 - Verification 🛡
 - Selection
 - Measurement
 - Characterization

"Verification: Do we make a product right?"

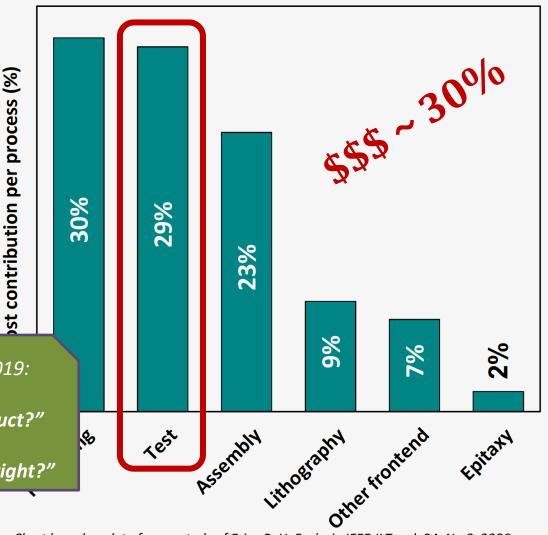
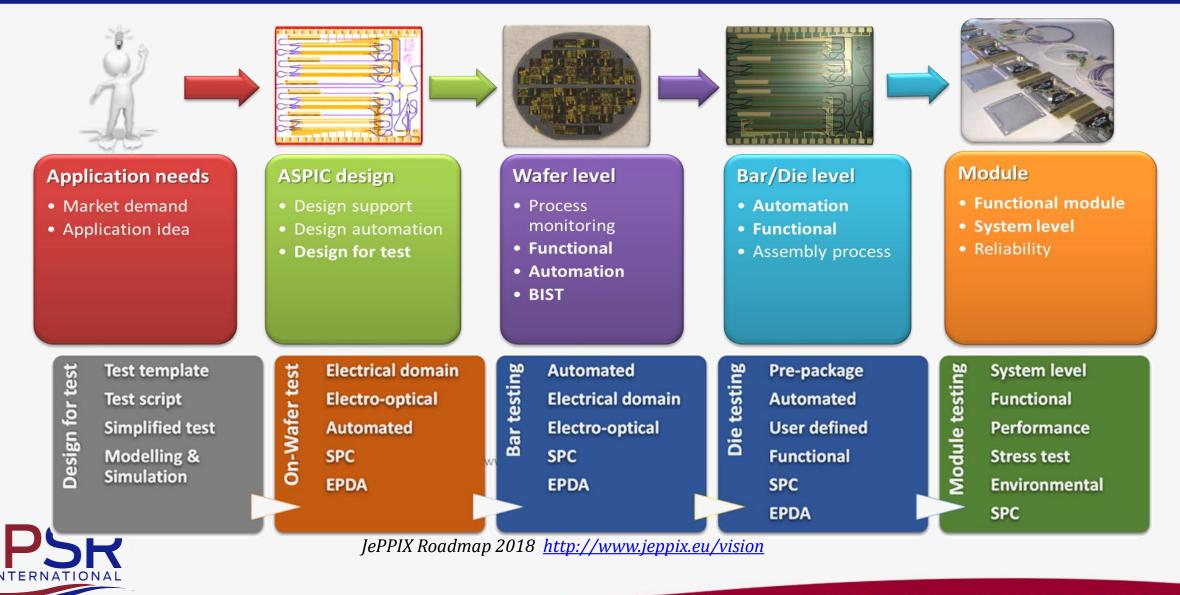
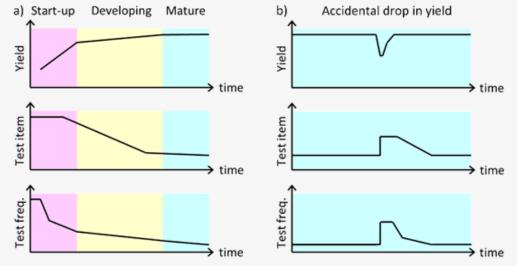



Chart based on data from a study of Erica R. H. Fuchs in IEEE JLT, vol. 24, No.8, 2006.

Test processes in PIC production chain



Driving Photonics Manufacturing

Grand challenge: beauty & the beast

Characterization is a 'beauty'

- Lots of data and information
- Good for low volume, MPW,
- Essential a 'startup-phase' of a product
- Resource demanding
- Volume 'unfriendly'
- Test is the 'beast'
 - Needs to be swift (s/test = \$\$\$)
 - Essential at early production stages (WLT)
 - A must for volumes

Makoto Okano (AIST), Sylwester Latkowski(TU/e), IPSR-I 2019

Test processes in volume production of Integrated Photonics

- Ideally as much as possible at wafer level (WLT)
 - Electrical + optical
 - RF: available but is it essential here?
- Highly automated
 - Handling
 - Probing
- Highly paralleled
 - Multiple electrical and optical IOs (simultaneously)
 - Multiple-sites
- Modular ATE
 - Tools
 - Test equipment

'How much time (\$) can be dedicated to test?' Tests per second instead of test per minutes

'Number of IOs needed update' 5y - 10y -15y 20->50->100 256 -> 512 -> 1024

Dramatically reduced NRE and footprint

WLT: Hybrid probe-cards

2023: Electrical-optical probe-card

- Out of plane coupling e.g. gratings
- Large MFD, alignment tolerant, tens of optical IOs
- DC + Optical
- Integration with AT (+1Y?)

'Such solution doesn't exist now and there seems to be a market for', Tobias

2028: Electrical optical probe-card NG

- In-plane, edge coupling
- 100+ optical IOs
- Small MFD, thither alignment accuracy
- DC+RF Optical

2033: Optical solder bumps

- 1000+ optical IOs
- Mixed signals
- Test and assembly suitable (flip-chip?)

'Grating couplers... ehm' , Martin & Sylwester ' SiPh folks eventually want them too', Makoto

How and when we will get 1000+ optical IOs? **Optical Solder bumps'** - IPSR-I Winter 2019, Tokyo 2040 should be OK... "I'll be quite advanced in age' then, Ignazio 'Let feel like in SF movie, you all heard John E', Sylwester "We've all seen Vanguard/KIT PHBs' so there is something, Martin 2030 we will have some!

Disclaimer: The quotes on the right are based on the loose notes of Sylwester from one of the TWG meetings ~2019-2020.

Driving Photonics Manufacturing

BIST: Built-In-Self-Test

2025: On-chip diagnostics

- Temperature monitoring
- Open, short CKT

2030: Self-calibration

- Parameter monitoring e.g. temp, power, lambda
- Feedback + correction signal
- Somewhat increased El Ph integration would help

2040: Re-purpose, Adaptive operation modes

- Failure-prevention
- Efficiency management e.g. Energy saving vs Performance
- Adaptive countermeasures
- Advanced logic needed -> Advanced (digital) El-Ph co-integration will be needed

IPSR-I ENABLING TECHNOLOGIES				
Test TWG				
Contents				
Executive summary				
Introduction				
Roadmap of Quantified Key Attribute Needs				
On-Wafer Testing				
Bar / die testing				
Life cycle testing (Mounted dies but also earlier)				
Testing parameters of production processes				
Situation analyses				
Manufacturing processes				
Design				
Wafer level Testing				
Bare die level Testing				
Generic Photonic Device Testing				
General Test Equipment				
Critical (infrastructure) issues				
Technology needs (related to Milestones)				
Prioritized Research Needs				
Prioritized Development & Implementation Needs				
Design				
Standardization of test metrics and qualification				
Tool: and method:				
High throughput testing (sub second per chip)				
Workforce development				
Gaps and showstoppers				
Standarization				
Platform agnostic testing				
High speed (rf bandwidth) testing				
User support				
User support				

Testing of Photonics in Global Technology Roadmaps

- Integrated Photonics Systems Roadmap International 2020 (IPSR-I)
 - AIM Photonics Academy and PhotonDelta
 - Electronic-Photonic Test and other chapters with a strong input from **PIXAPP and JePPIX**
 - https://photonicsmanufacturing.org/sites/default/files/documents/test.pdf

- Heterogeneous Integration Roadmap 2021
 - IEEE Electronics Packaging Society, Electron Devices Society, IEEE Photonics Society, American Society of Mechanical Engineers (ASME), SEMI
 - Chapter 17: Test Technology, Photonic Devices
 - https://eps.ieee.org/images/files/HIR_2021/ch17_test_final.pdf

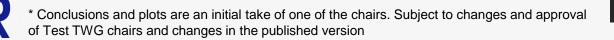
From technology roadmap to industry standards

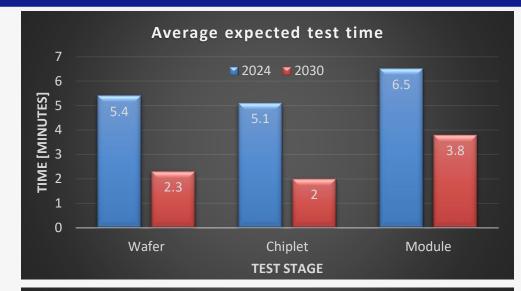
- IEEE Standards Association Photonics Committee (2019)
 - IPSR-I Study Group (SG) to identify standardization potential
- IEEE SA Project approval request (PAR)

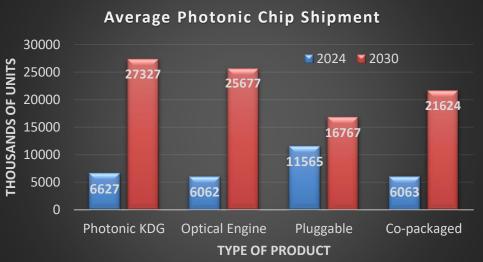
Advancing Technology for Humanity STANDARDS ASSOCIATION

- Output from **PIXAPP, JePPIX Pilot Line and OpenPICS** published at **openEPDA.org** serves as the base
- SG drafts and submits the first PAR (Q3 2021)
- Project approved by IEEE SA (December 2021) Project Number: P3112
 - <u>Title</u>: Standard for Electronic Photonic Design Automation Open Data Formats Terminology and Definitions
 - <u>Purpose</u>: The purpose of this standard is to unify data formats and exchange methods used in the photonic integrated circuits supply chain
 - <u>Need</u>: (...) fragmentation of the supply chain in the absence of any standardization efforts leads to inefficient product creation flows, long design-in windows, moderate yields at component and product levels, and elevated costs (...) A standardized approach will benefit fragmented PIC supply chain, vertically integrated businesses, original equipment

manufacturers (OEMs), and automated test equipment (ATE) vendors.


IPSR-I 2024 Sneak peek


Electronic Photonic Test Chapter


- (More) Compact
- Re-Structured
- New input and data
- Industry-enriched content
- In your hands soon

Survey 2024 early preview *

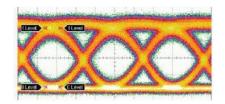
- Expected test time
 - Minutes in 2024
 - 52% reduction in the next 5 years
- Expected product shipment
 - Millions (aggregated) in 2024
 - 300% increase in the next 5 years

Photonic Integration Technology Center

- Joint Innovation Center on Integrated Photonics
- Accelerate the industrial uptake of integrated photonics
- Access to state-of-the-art photonic chip fabrication and integration facilities
- From application requirements to full system design to chip design and material and equipment development
- Organizing and executing complex and disruptive innovations with and along the value chain
- Shared Research Programs aligned with Industrial needs

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF TWENTE.

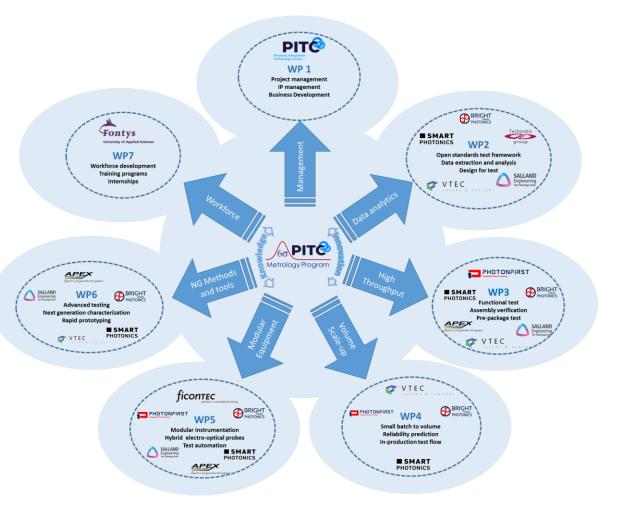


Metrology Program

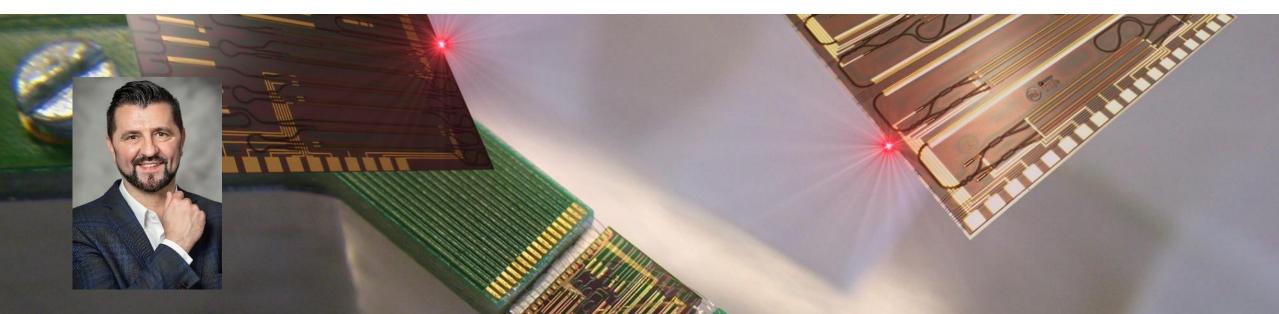
Objectives and strategy

- Product development cycles reduced by at least 3 months
- Development of **design-for-test** methodologies
- Next-generation characterization tools and methods to support new product developments
 - E-O bandwidth test at +100GHz, reproducible and fast linewidth/stability measurements
 with >10measurements/second
 - Polarization resolved test and characterization e.g., degree of rejection >30dB
- Advance and mature test throughput of test from mins/device towards seconds/device
- Massively parallel testing for production using automated and modular test equipment
- **Throughput ramp up by 10X:** from small-batch testing, extrapolate accurate models to minimize the overall number of test sites/device
- Talent development shaping dedicated training programs and contribute qualified workforce for the expected 5000 photonics related positions available by 2025

PITC Metrology Program launching partners



Metrology Program Technical agenda overview


Work packages		
WP1	Program management and business development	
WP2	Data Analytics	
WP3	High throughput testing	
WP4	Test in small batch to volume scale-up	
WP5	Modular tools and instrumentation	
WP6	Next generation test and characterization	
WP7	Talent development	

Thank you!

Questions?

s.latkowski@tue.nl

sylwester.latkowski@pitc.nl

Credits and sources:www.nature.comJePPIXraith.comTU/ewww.intel.comWURLionix Internationalgigalight.medium.comSMART PhotonicsSaxionEffect PhotonicsThe InternetNanolabNLLionix Internet

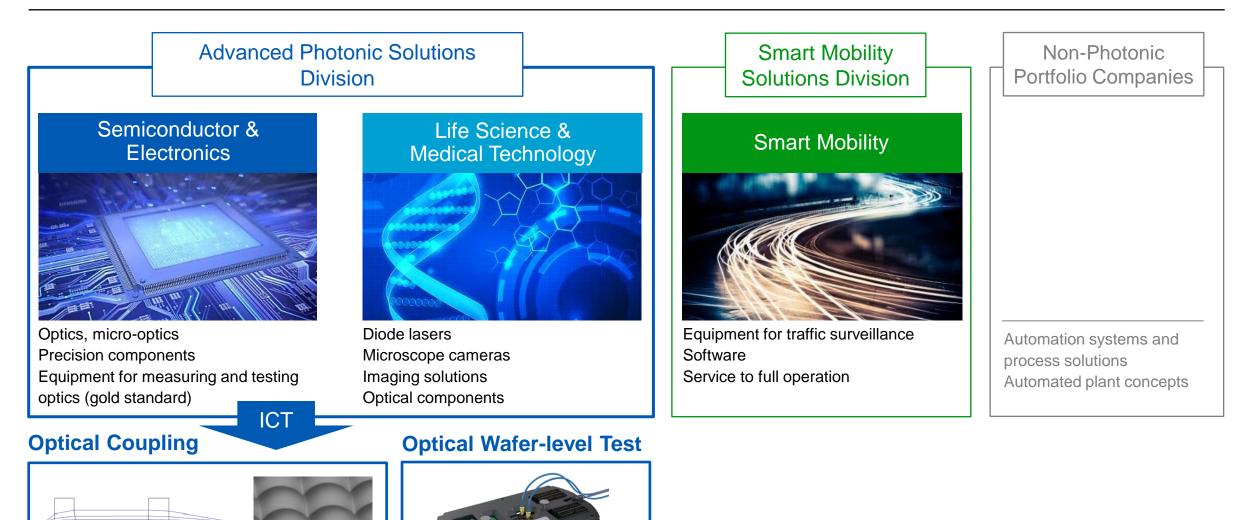
UFO Probe[®] Card High-Volume test solution for PIC Wafer-Level Test

Jenoptik webinar 2024: "Just the right PIC" | Tobias Gnausch

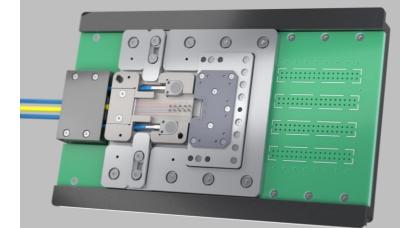

MORE LIGHT

Photonics at Jenoptik

Jenoptik at a glance A leading globally operating photonics group



Key facts


Organizational structure of the Jenoptik Group: Two photonics-based divisions and automotive business

MORE LIGHT

UFO Probe[®] Card High-Volume test solution for PIC Wafer-Level Test

Enables High-volume Wafer Level Tests of Photonic Integrated Circuits (PICs)

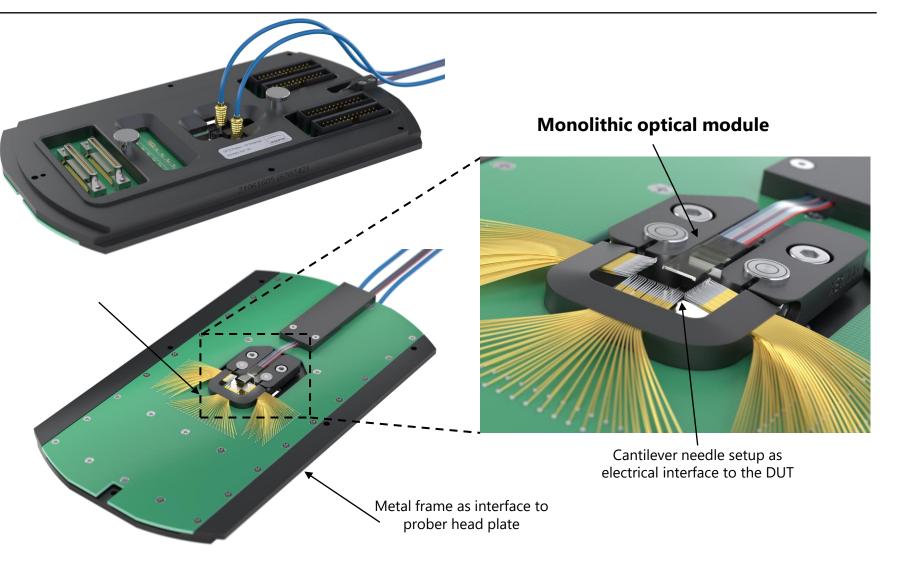
JENOPTIK's High-Volume test solution for PIC Wafer-Level Test

• Focus: High-Volume Manufacturing Eco-system

UFO Probe[®] Card

- Simultaneous optical and electrical probing enables utilization of existing IC test eco-system
- Cooperation with probe card manufacturer and tester companies

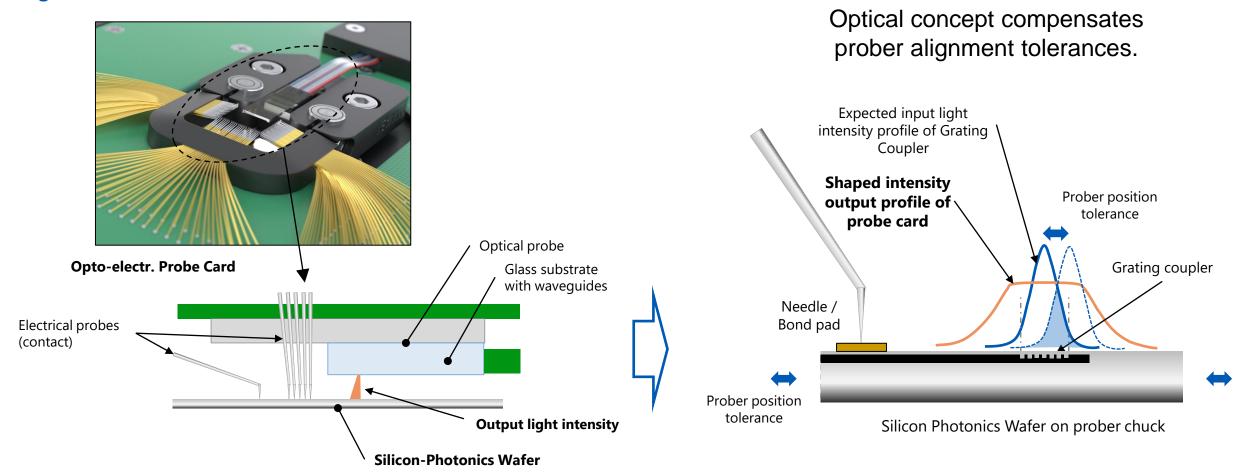
ENOPT


MORE LIGHT

UFO Probe[®] Card Enables High-volume Wafer Level Tests of Photonic Integrated Circuits (PICs)

Probe card key figures

- Standard prober interfaces
- Monolithic optical module with up to 32 channel
- Alignment insensitive optical coupling for vertical emitting PICs
- Simultaneous optical and electrical probing
- Utilize proven needle technology (partnering with probe card manufacturer)



13.03.2024 Webinar "Just the right PIC" - How advanced test concepts enable fast PIC wafer-level tests

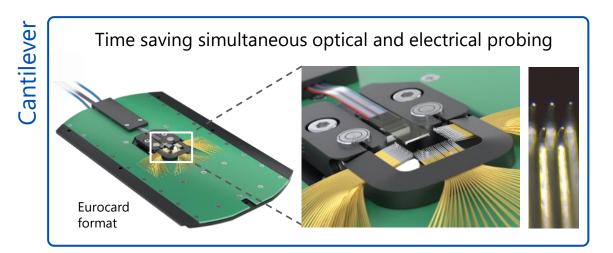
JENOPTIK Advanced Photonic Solutions | public

UFO Probe[®] Card Working Principle

Alignment insensitive test solution for PIC Wafer-Level Test

13.03.2024 Webinar "Just the right PIC" - How advanced test concepts enable fast PIC wafer-level tests

JENOPTIK Advanced Photonic Solutions | public

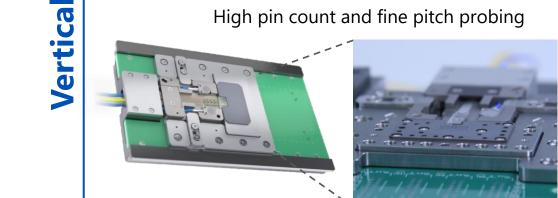

13.03.2024 Webinar "Just the right PIC" - How advanced test concepts enable fast PIC wafer-level tests JENOPTIK Advanced Photonic Solutions | public

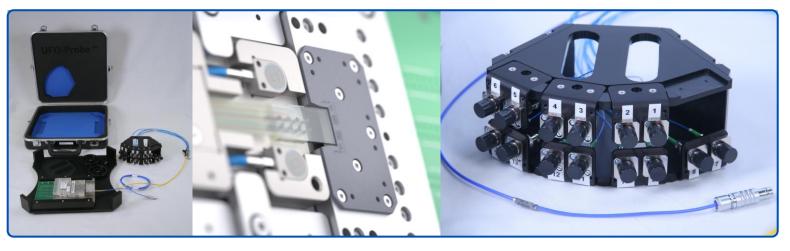
Probe card types

UFO Probe[®] Card

UFO Probe[®] Cantilever

- Works for vertical emitting PICs
- Monolithic optical module with up to 32 optical channels
- Optical standard pitch of 127µm and 250µm or individual pitch
- **Cantilever** needle technology: ≤250 needles, pointed or flat tip
- Prober interface: Eurocard format
- Capacitive distance sensor for direct height control


Webinar "Just the right PIC" - How advanced test concepts enable fast PIC wafer-level tests 13.03.2024


UFO Probe[®] Vertical

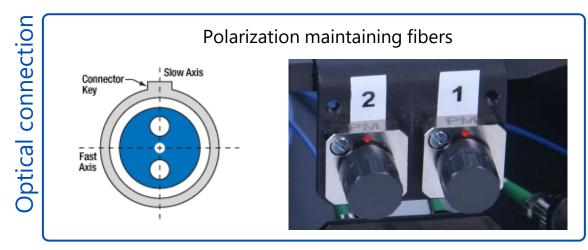
UFO Probe[®] Card

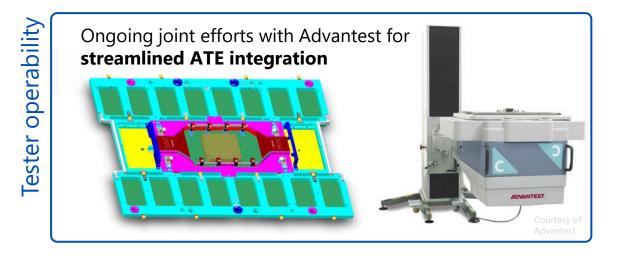
Probe card types

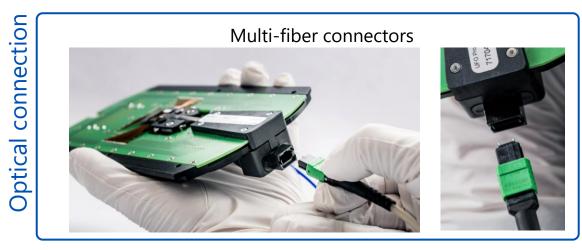
- For small pad sizes down to 35µm (square).
- Small needle pitch: \geq 40µm
- High needle count: up to 30000 or more,
- Pointed or flat needle tip (pad and bump) probing)
- Optical Channels: up to 32 or more, @ 1260-1630nm
- Improved fiber management
- Multi-DUT and High frequency (RF) capable
- Best choice for ATE usage

13.03.2024 Webinar "Just the right PIC" - How advanced test concepts enable fast PIC wafer-level tests

JENOPTIK Advanced Photonic Solutions | public

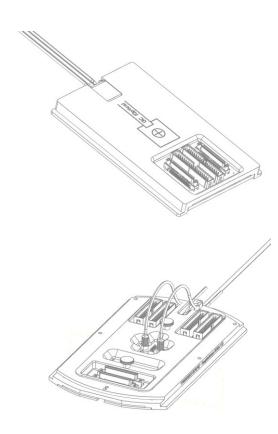

UFO Probe[®] Card Further developments


UFO Probe® ATE


- Integration for direct docking ATE systems
- UFO Probe Technology for vertical emitting PIC test
- Path to high count optical I/O and multi-site

Optical connections

PM-fibers and Multi-fiber connectors (also in combination)



UFO Probe[®] Card Overview

Specifications	Current generation	Future generations
Component to be tested (Device under test/DUT)	Electronic and photonic integrated circuits (EPIC); optical transceivers for data transmission and telecommunications applications	EPICs for transceivers, photodiodes, biosensors and Solid State LIDAR
Electric needle technology	Cantilever and Vertical	Cantilever, Vertical/Advanced
Optical coupling principle DUT	Vertical coupling	Vertical coupling
Number of optical inputs/outputs (OI/OO)	Up to 32 or more	<200
Pitch OI/OO	127 μm, 250 μm, flexible for >250 μm	flexible
Layout configuration of OI/OO arrays	Linear arrangement with same direction of inputs/outputs	Configurable to own needs
Coupling angle	0° and 11.6° standard, up to 20° customized	0° - 20°
Supported wavelength	1260 – 1625 nm (O/ L-band)	VIS to NIR (U-band)
Measurement of insertion loss	Repeatability: ~ 0.3 dB	Repeatability target: 0.1 dB
RF measurement	Up to 110 GHz, depending on needle technology	GHz
Number of PICs measured in parallel	One	Multi-DUT
Interfaces	Eurocard, ATE*	Eurocard, ATE full direct docking

* Currently without automatic optical docking

13.03.2024 Webinar "Just the right PIC" - How advanced test concepts enable fast PIC wafer-level tests

UFO Probe[®] Card Jenoptik Competencies

- Design: Optical module and general E/O-probe card
- Manufacturing and supply chain

Manufacturing

- Micro-assembly and alignment of optical and electrical modules
- Optical test and verification in lab: customized test rig
- Test under manufacturing conditions: UF3000 Prober

1300 1 10000 1 10000 1 10000 1 10000 1 10000 1 10000 1 100000 1 10000 10

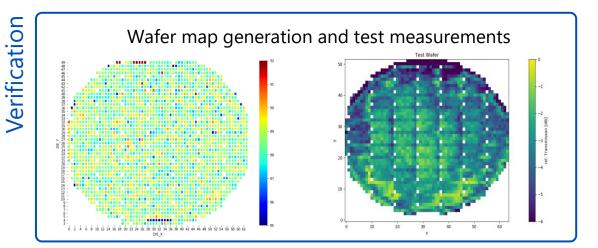
111100 1000 500 licon-Photonics Wafer

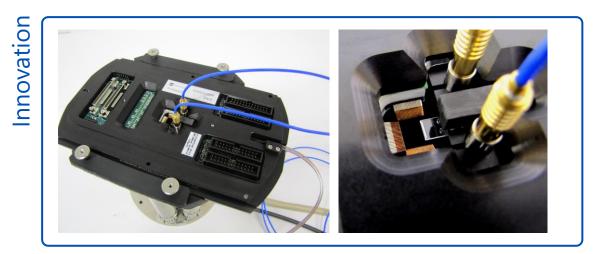
UFO Probe[®] Card Jenoptik Competencies

- Design: Optical module and general E/O-probe card
- Manufacturing and supply chain

Manufacturing

Beam profil


Grating couple


- Micro-assembly and alignment of optical and electrical modules
- Optical test and verification in lab: customized test rig
- Test under manufacturing conditions: UF3000 Prober

Beam profile measurements

1300 15000 15000 15000 1500 150 150 Probe Car

1900 (1910) (1911) (1910) (1911) (1910) (191 1540 74,250 74,250 74,2000 750 560

Supporting the digital world.