RecommendMail Facebook Twitter Google Plus

JENar™ F-Theta Lenses: Laser Material Processing for Medium and High-Power Applications

JENar™ F-theta objective lenses can be used for the high-precision micro structuring, marking and labeling of a wide range of materials.

F theta lens
JENar F-theta objective lenses are particularly well suited for use in micromachining for medium and high-power applications in the kilowatt range. You can use standard objective lenses at laser wavelengths of UV to VIS and IR: You will receive objective lenses for wavelengths of 1080 to 266 nanometers.

The conventional F-theta objective lenses from Jenoptik offer exceptional durability and enable you to perform high-precision laser material processing. You can use them for the micro structuring, marking and labeling of a wide range of materials. The objective lenses come with protective glass. As a special service, we are able to offer you our STEP files, which allow you to integrate the JENar F-theta objective lenses quickly and easily into any system.

Each objective lens undergoes a standardized application testing procedure. This enables us to achieve highly consistent optical properties throughout series production. You will benefit as the objective lenses are easy to change and the life-cycle stability is increased.

In addition to these standard designs, we can develop complete systems for you, using components from laser beam shaping to the expansion and splitting of laser beams. For high-power applications using fiber lasers and short-pulse lasers, our experts have developed full-fused silica lenses: the Silverline™ F-theta product family.

Benefits

  • Extremely durable: Thanks to special, low-contamination mounting technology, avoidance of adhesive and lubricant and assembly in a certified cleanroom
  • High-precision: Suitable for micro structuring, marking and labeling of a wide range of materials
  • Flexible: Quick and easy to integrate into any existing system
  • Customized: Available as a standard selection or adapted to your individual requirements
  • Efficient: Save money with FEM analyses of thermal and mechanical stress of optical assemblies
  • Series stability: Comprehensive testing guarantees replaceability in the field

Fields of Application

  • Microelectronics: E.g. micro structuring of glass
  • Semiconductor industry: E.g. micromachining
  • Automotive industry: E.g. cutting and structuring composites
  • Medicine: E.g. removing gauze in therapeutic applications
  • General applications: E.g. glass machining, battery welding

Product Overview

F-Theta-Objective Lens JENar™ Wavelength
[nm]
Order Number Data Sheet (DB)
017700*-
STEP (STP) Zemax-Blackbox (ZIP)
03-90FT-125-1030...1080 1030...1080 017700-003-26 DB *-003-26 STP *-003-26 ZIP *-003-26
03-424FT-350-1030...1080 1030...1080 017700-009-26 DB *-009-26 STP *-009-26 ZIP *-009-26
100-1030...1080-93 1030...1080 017700-024-26 DB *-024-26 STP *-024-26 ZIP *-024-26
160-1030...1080-170 1030...1080 017700-019-26 DB *-019-26 STP *-019-26 ZIP *-019-26
170-1030...1080-170 1030...1080 017700-018-26 DB *-018-26 STP *-018-26 ZIP *-018-26
255-1030...1080-239 1030...1080 017700-017-26 DB *-017-26 STP *-017-26 ZIP *-017-26
347-1030...1080-354 1030...1080 017700-022-26 DB *-022-26 STP *-022-26 ZIP *-022-26
420-1030...1080-420 1030...1080 017700-021-26 DB *-021-26 STP *-021-26 ZIP *-021-26
03-75FT-100-532 532 017700-202-26 DB *-202-26 STP *-202-26 ZIP *-202-26
03-75FT-108-532 532 017700-203-26 DB *-203-26 STP *-203-26 ZIP *-203-26
100-532-90 532 017700-209-26 DB *-209-26 STP *-209-26 ZIP *-209-26
170-532-160 532 017700-206-26 DB *-206-26 STP *-206-26 ZIP *-206-26
255-532-233 532 017700-205-26 DB *-205-26 STP *-205-26 ZIP *-205-26
330-532-336 532 017700-208-26 DB *-208-26 STP *-208-26 ZIP *-208-26
420-532-420 532 017700-207-26 DB *-207-26 STP *-207-26 ZIP *-207-26
53-355-22 355 017700-401-26 DB *-401-26 STP *-401-26 ZIP *-401-26

JENar™: Trademark registered in EU, CN, JP, SG  |  Silverline™: Trademark registered in DE, JP, SG
F-Theta: Registered Design in EU, CN, KR, IN, SG

For our full-fused silica objective lenses, please click here.

Downloads

Basic Principles F theta lenses

Basic principle of a f theta lens

F-Theta objective lenses

Jenoptik‘s f theta lenses are optimized for the requirements of laser material processing. On the one hand, they are designed to yield excellent optical performance, manifesting itself in small field curvature, small distortion, and diffraction limited focus sizes. On the other hand, f theta lenses realize a linear dependence between the angle Θ of the incoming laser beam and the image height h of the focussed spot on the workpiece. The proportionality factor is the focal length f. This relation is mathematically expressed as 

h = f Θ

which gives those special lenses their name f theta.

Application-relevance

Whereas the merits of good optical performance are easy to see, the advantages of the f theta relation are more subtle and best understood considering polygon scanners. Those scanners rotate with a constant angular velocity. If the image height would be proportional to the tangens of Θ, then the speed of the spot on the workpiece would increase for higher angles and therefore, the energy deposited in the material would decrease, possibly resulting in inhomogeneous application performance. Since the f theta lens translates the constant angular velocity of the polygon to a constant velocity of the spot on the workpiece, this problem disappears.

Focal length

In theoretical nomenclature, the focal length is the distance from the second cardinal plane to the paraxial focus point of the objective. That means, if one would represent the objective as having vanishing length, then the distance from this ideal lens to the focus would be the focal length.

Application-relevance

From the f theta relation h = f * theta, the image height is proportional to the focal length, i.e. if one wants to increase the area of application then one can use lenses with bigger focal length. However, if one wants to retain the same spot size, then, according to the focus size definition, one would also have to increase the laser input beam size. Another property is the distance between lens and workpiece. If this has to be increased, usually an increase in focal length is required.

Jenoptik f theta lenses are optimized for quadratic scan fields when using galvo scanners

Scan field

When using a galvanometer 2D-scanner, changing the mirror angles moves the laser spot over the workpiece. The Jenoptik's f theta lenses are then optimized for aquadratic scan field where the diagonal of this square is denoted as the scan field diagonal.

Application-relevance

If the galvanometer mirrors are tilted more than the angles corresponding to the quadratic scan field area two major effects appear. Firstly, the optical performance will degrade above diffraction limit, and secondly the laser beam might be clipped inside the objective.

Scanner geometry

The geometry of a 2D galvanometer scanner is very important for the design of an efficient lens. Since the two galvanometer scan mirrors have to have a certain distance to prevent collision, the application performance will not be rotationally symmetric, instead they will exhibit a two fold mirror-symmetry in X and Y. The distance between the mirrors is given by the parameter a1. The distance from the second mirror to the flange of the objective is described by parameter a2. The separation of mirrors makes the physical concept of a pupil in admissable. One therefore defines an effective pupil as being positioned in the middle between the two mirrors. The non-existence of a real pupil also has the consequence that a 2D-galvanometric scan system cannot be perfectly telecentric.

Application-relevance

Different optical properties of an existing f theta lens can be modified by modifying the scanner geometry. But care must be taken not to create clipping of the laser beam somewhere in the objective. For example, increasing the distance between objective and effective pupil changes the telecentricity angle (usually it decreases it). But to prevent clipping the maximum scan angle, and therefore the maximum field size, must be reduced as well.

A telecentric lens shows ma more homogenous focus size distribution

Telecentricity

Telecentricity describes the angle of the centroid of the laser beam at the edge of the scan field, for example how much the entire beam is tilted with respect to the optical axis.

Application-relevance

Telecentric lenses usually show a more homogeneous focus size distribution over the full field. Furthermore, telecentric lenses are more „scale preserving“ when the workpiece is defocussed. For example, if the workpiece is moved away from the lens, but the tilt of the laser beamis vanishing, the spot position will not change. This is important in drilling applications. An immediate consequence of a small telecentricity angle is that the lenses have approximately the same diameter as the field diagonal. Therefore, telecentric lenses are usually more expensive than non-telecentric ones.

Scan angle

The max full diagonal scan angle corresponds to the scanfield diagonal, i.e. using the objective with angles above this maximum angle will lead to clipping of the beam.

Application-relevance

From the f theta relation one sees that an increase of the field size can also be achieved by using bigger scan angles. This would have the advantage that the beam size would stay the same. However, big scan angles pose a considerable complication for the design of cost effective f theta lenses.

Input beam diameter intensity profile

Input beam diameter

To control stray light, and also reduce the required size of optical elements in laser material processing applications, the incoming Gaussian laser beam will usually be clipped at the diameter where the intensity has fallen to 1/e² of the maximum value. The objectives are designed such that those beams will pass through the objective without being clipped anywhere.

Application-relevance

The input beam diameter immediately affects the spot size via the spot size relation anti proportionally. Bigger beam diameters result in smaller spot sizes and vice versa. Using beams with diameters above the maximum allowed beam size will lead to clipping of the beam at the edges of the field.

Focus size

When focussing light, the spot size σ can not surpass the limit of diffraction, i.e. the spot size does not depend on the aberrations of the lens anymore but only on the physical properties wavelength λ, the input beam diameter Ø, and the focal length f. As for the laser input beam diameter, it is common to define the focus size as the diameter at which the intensity is dropped to 1/e² of the maximum intensity at the spot center. For input beams defined as in „input beam diameter“, the focus size is given as

σ = 1.83 λ f / Ø

Application-relevance

Decreasing the focus size immediately decreases the structure sizes of the patterns written. It also increases the maximum intensity in the center of the spot, therefore lifting it above the application threshold of a particular material. If, however, the intensity is way above the application threshold, the energy not needed for the application processed is deposited in the material leading to varying non-controllable side effects, possibly reducing the  application performance. Therefore, the user has to find the optimal focus size for the application under question.

Beam-clipping

If the beam diameter of the incoming laser beam is too big or the scan angle is above the maximum allowed angle, parts of the laser beam might hit mechanical parts when passing through the objective. This is referred to as clipping of the laser beam.

Application-relevance

A laser beam being clipped inside the objective will generate unwanted stray light and might also heat up the objective leading to thermal focus shift and even destruction of the lens. All JENar Standard and Silverline lenses are designed to show no beam clipping when used with the scanner setup described on the datasheets.

Back working distance

Whereas the focal length is a rather theoretical construct, the back working distance describes the real distance between the end of the objective (the edge closest to the workpiece) and the workpiece.

Application-relevance

The back working distance describes how much free space there is between workpiece and lens. Since focal length and back working distance are closely related, the need for a bigger free space between workpiece and objective usually results in the requirement of using lenses with bigger focal lengths.

Thermal focus shift

When the temperature of an optical material changes, the corresponding shape and index of refraction change. These two effects alter the optical properties of the system, mainly the focus position. This change in position is called the thermal focus shift. An objective can be optimized to withstand a global homogeneous temperature change (due to variations of room temperature and sufficient time of relaxation), for example by employing temperature dependent spacers. However, when used with a high power laser, the temperature distribution over the lens elements becomes non-homogeneous and also scan-pattern dependent. The only way to make objectives insensitive towards these effects is to reduce the change in temperature, for example reduce absorption in lens and coating material

Application-relevance

A thermal focus shift, when uncompensated, changes the application performance over time. A workpiece being in perfect focus at the beginning of the process might be considerably out of focus after some processtime and the application result will look very different.

Silverline™

Fused silica exhibits extremely small material absorption and is therefore, very well suited for being used for high power applications. Jenoptik offers a product family off theta objectives consisting completely of fused silica elements. These elements also have special low-absorption coatings yielding high resistivity to thermal focus shifts.

Damage threshold LIDT

The laser induced damage threshold (LIDT) describes the laser intensity (or fluence) above which damage of the lenses occurs. This threshold depends on several parameters like wavelength and pulse duration and involves different physical phenomena. For CW and long pulses (bigger than 10 ns) the main problem is the accumulation of energy inside the material and subsequent melting and evaporation. For ultra-short pulses (smaller than 10 ps), on the other hand, non-thermal processes like avalanche ionization and coulomb explosion are dominant reasons for damage. This variety of different processes makes an analytical description very difficult and for industrial purposes it seems to be advisable to test coatings and materials and derive phenomenological descriptions. Jenoptik tested its standard coatings and materials for the most common application parameters and expressed the pulse-duration dependent damage threshold fluence Φ in terms of a power law of the pulse duration τ.

Φ = c * τ ^ p

The parameters c and p of this law are wave length dependent.

Application-relevance

Being able to pass more energy per time through anoptical system allows a faster scanning and therefore ahigher throughput.

Pulse stretching of a laser pulse reduces its maximal intensity (GDD formula)

Pulse stretching GDD

When light passes through an optical material of non-vanishing dispersion it accumulates a wavelength dependent optical phase. For laser pulses, which are effectively a linear superposition of harmonic oscillations of different wavelengths, this influences the pulse shape.In a second order approximation for gaussian pulses, the temporal stretching of the laser pulse is determined only by the second derivative of the phase change with respect to the light frequency, also called the group delay dispersion (GDD / P2). 

The shape of the laser pulse stays gaussian, but its width, expressed as its standard deviation, is scaled as: P3 .

Application-relevance

A temporal stretching of the laser pulse reduces its maximal intensity. This might have severe impact on the application performance. To remedy the problem of too long pulses at the workpiece due to pulse stretching one could use lasers with even shorter output pulses. This might increase the intensity above the damage threshold of the involved optical system. Another way would be a precompensation of the induced GDD by gratings, prisms, and microoptial elements (P1).  

Product recommendations

Please contact our experts for advice.

Optics & Optical Systems

+49 3641 65-3148

+49 3641 65-3677

Personal Information

Salutation

* = mandatory field, please complete

Your inquiry