Photodiode

Prototype

15.12.2010 rev. 01

<table>
<thead>
<tr>
<th>Wavelength range</th>
<th>Type</th>
<th>Technology</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared</td>
<td>Planar</td>
<td>InGaAs/InP</td>
<td>TO-18</td>
</tr>
</tbody>
</table>

Description

InGaAs-Photodiode mounted in TO-18 standard package. High spectral sensitivity in the infrared range (NIR, SWIR).

Applications

Optical communications, safety equipment, light barriers

Miscellaneous Parameters

$T_{\text{amb}} = 25^{\circ} \text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test conditions</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active area</td>
<td></td>
<td>A</td>
<td>0.78</td>
<td>mm2</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td></td>
<td>T_{amb}</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td></td>
<td>T_{stg}</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Temperature coefficient of I_D</td>
<td>$T = -40...85^{\circ} \text{C}$</td>
<td>$T_{C(I_D)}$</td>
<td>7.4</td>
<td>%/K</td>
</tr>
</tbody>
</table>

Optical and Electrical Characteristics

$T_{\text{amb}} = 25^{\circ} \text{C}$, unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>$I_F = 10 \text{ mA}$</td>
<td>V_F</td>
<td>0.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Breakdown voltage2</td>
<td>$I_q = 10 \mu\text{A}$</td>
<td>V_R</td>
<td>5</td>
<td>1710</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Sensitivity range at 10%</td>
<td>$V_R = 0 \text{ V}$</td>
<td>λ</td>
<td>440</td>
<td></td>
<td></td>
<td>nm</td>
</tr>
<tr>
<td>Spectral bandwidth at 50%</td>
<td>$V_R = 0 \text{ V}$</td>
<td>$\Delta\lambda_{0.5}$</td>
<td>680</td>
<td></td>
<td></td>
<td>nm</td>
</tr>
<tr>
<td>Responsivity at 1300 nm1</td>
<td>$V_R = 0 \text{ V}$</td>
<td>S_λ</td>
<td>0.9</td>
<td></td>
<td>10</td>
<td>A/W</td>
</tr>
<tr>
<td>Dark current</td>
<td>$V_R = 5 \text{ V}$</td>
<td>I_D</td>
<td>0.5</td>
<td>10</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Shunt resistance</td>
<td>$V_R = 10 \text{ mV}$</td>
<td>R_{SH}</td>
<td>15</td>
<td>30</td>
<td></td>
<td>MΩ</td>
</tr>
<tr>
<td>Noise equivalent power</td>
<td>$\lambda = 1300 \text{ nm}$</td>
<td>NEP</td>
<td>3.0×10^{-14}</td>
<td></td>
<td></td>
<td>W/√Hz</td>
</tr>
<tr>
<td>Specific detectivity</td>
<td>$\lambda = 1300 \text{ nm}$</td>
<td>D^*</td>
<td>2.9×10^{12}</td>
<td></td>
<td></td>
<td>cm2·√Hz·W$^{-1}$</td>
</tr>
<tr>
<td>Junction capacitance</td>
<td>$V_R = 0 \text{ V}$</td>
<td>C_J</td>
<td>130</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>

1measured on bare chip on TO-18 header
2for information only

Note: All measurements carried out with JENOPTIK Polymer Systems equipment
We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each application by the customers themselves.

JENOPTIK Polymer Systems GmbH, D-12555 Berlin, Köpenicker Str.325 b, Haus 201
Tel.: +49-30-6576 2543, Fax : +49-30-6576 2545