Jumbo-LED

Radiation
- Near Infrared

Type
- 3 W

Technology
- AlGaAs/Si

Case
- Plastic lens, metal case

Outline:
- \(H = 12.4 \text{ mm (± 0.5)} \)
- \(D = 16 \text{ mm (± 0.5)} \)
- Thread M10
- Pin 1 – cathode
- Pin 2 – anode

Description
High-power near infrared LED in an black anodised aluminium case, with thread socket for easy handling and heat sink mounting.

Applications
Medical appliances, remote control and optical communications, light barriers, measurement systems.

Absolute Maximum Ratings
at \(T_{amb} = 25°C, \) on heat sink (\(S \geq 200 \text{ cm}^2 \)), unless otherwise specified.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test conditions</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC forward current</td>
<td>on heat sink</td>
<td>(I_F)</td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>on heat sink</td>
<td>(P)</td>
<td>3.2</td>
<td>W</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>on heat sink</td>
<td>(T_{amb})</td>
<td>-25 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>on heat sink</td>
<td>(T_{stg})</td>
<td>-40 to +100</td>
<td>°C</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>on heat sink</td>
<td>(T_J)</td>
<td>115</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics
\(T_{amb} = 25°C, \) unless otherwise specified.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward voltage</td>
<td>(I_F = 350 \text{ mA})</td>
<td>(V_F)</td>
<td>2.2</td>
<td>2.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Switching time</td>
<td>(I_F = 350 \text{ mA})</td>
<td>(t_r, t_f)</td>
<td>30 /20</td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Reverse voltage</td>
<td>(I_R = 5 \mu A)</td>
<td>(V_R)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction-case</td>
<td></td>
<td>(R_{thJC})</td>
<td>10</td>
<td></td>
<td></td>
<td>K/W</td>
</tr>
</tbody>
</table>

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer.

JENOPTIK Polymer Systems GmbH, D-12555 Berlin, Köpenicker Str.325 b, Haus 201
Tel.: +49-30-6576 2543, Fax : +49-30-6576 2545

1 of 4
Optical Characteristics

at $T_{amb} = 25^\circ C$, on heat sink ($S \geq 200 \text{ cm}^2$), unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiant power</td>
<td>$I_F = 350 \text{ mA}$</td>
<td>Φ_e</td>
<td>100</td>
<td></td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Radiant intensity</td>
<td>$I_F = 350 \text{ mA}$</td>
<td>I_e</td>
<td>750</td>
<td></td>
<td></td>
<td>mW/sr</td>
</tr>
<tr>
<td>Peak wavelength</td>
<td>$I_F = 350 \text{ mA}$</td>
<td>λ_p</td>
<td>720</td>
<td>735</td>
<td></td>
<td>nm</td>
</tr>
<tr>
<td>Spectral bandwidth at 50%</td>
<td>$I_F = 350 \text{ mA}$</td>
<td>$\Delta\lambda_{0.5}$</td>
<td>20</td>
<td></td>
<td></td>
<td>nm</td>
</tr>
<tr>
<td>Viewing angle</td>
<td>$I_F = 350 \text{ mA}$</td>
<td>φ</td>
<td>15</td>
<td></td>
<td></td>
<td>deg</td>
</tr>
</tbody>
</table>

Note: All measurements carried out with JENOPTIK Polymer Systems equipment, on blank aluminium heat sink, $S = 180 \text{ cm}^2$, passive cooling. Measurement results and curve characteristics obtained with other heat sinks may differ.
Remarks concerning optical radiation safety*

Up to nominal forward current (<700mA) and continuous operation, this LED may be classified as LED product Class 2, according to standard IEC 60825-1:A2. Class 2 products emit in the visible region, damaging exposure is usually prevented through avert reactions including blink reflex. It can be expected that these reactions provide sufficient protection under reasonably predictable conditions. This also implicates a direct observation of the light beam by means of optical instruments.

*Note: Safety classification of an optical component mainly depends on the intended application and the way the component is being used. Furthermore, all statements made to classification are based on calculations and are only valid for this LED "as it is", and at continuous operation. Using pulsed current or altering the light beam with additional optics may lead to different safety classifications. Therefore these remarks should be taken as recommendation and guideline only.
Handling precautions

To prevent damage to the LED during soldering and assembly, following precautions have to be taken into account.

a) The bending point of the lead frame should be located at least 2.5 mm away from the body.

b) While bending, the base of the lead frame has to be fixed with radio pliers or similar.

c) To ensure an adequate strain relief, the lead frames have to be firmly fixed during soldering.

d) Avoid any torsion or tensile loading of the lead frames, especially when they have been heated after being soldered.

e) LEDs are static sensitive devices, so adequate handling precautions have to be taken, e.g. wearing grounding wrist straps.

ESD